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Take home message

Galaxy observations can be used to 
constrain cosmological parameters!

10 More et al.

Figure 7. Covariance matrix: Model A
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Outline of the talk
Concordance cosmology: ΛCDM model

Galaxy distribution
Observables: Galaxy abundance, galaxy 
clustering and galaxy-galaxy lensing

The halo model and the conditional 
luminosity function

Results: ΛCDM model and beyond!
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Cosmological paradigm
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Cosmological paradigm

74%

22%

4%Dark matter

Dark energy

Atoms

Homogenous Universe
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Galaxy-dark matter connection

Kinematics of satellite galaxies
Strong gravitational lensing

Millenium simulation, Springel et al. 2005 Dark MatterGalaxies

5

Abundance and clustering of 
galaxies
Weak gravitational lensing

HOW DO GALAXIES OCCUPY DARK MATTER HALOES?
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Galaxy luminosity function
2. OBSERVATIONAL DATA

Figure 2.3: The galaxy luminosity function,Φ, derived from SDSS (see Blanton et al. 2003a).

12

Blanton et al. 2003

Galaxy abundance

Brighter

Average number density of galaxies 
as a function of brightness.
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Galaxy clustering: the two point 
correlation function

ξ(r) =
DD(r, r + dr)

RR(r, r + dr)
− 1
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Galaxy clustering: the two point 
correlation function

Random Clustered

ξ(r) =
DD(r, r + dr)

RR(r, r + dr)
− 1

Galaxy Clustering: The Data

Wang et al. (2007)

different luminosity bins

Frank van den Bosch                                                           Yale University
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Halo model

Structure in 
dark matter 
distribution

Fig. 1. The complex distribution of dark matter (a) found in numerical simulations
can be easily replaced with a distribution of dark matter halos (b) with the mass
function following that found in simulations and with a profile for dark matter
within halos.

1 Introduction

This review presents astrophysical applications of an approach which has its
origins in papers by Jerzy Neyman & Elizabeth Scott and their collaborators
nearly fifty years ago. Neyman & Scott [199] were interested in describing
the spatial distribution of galaxies. They argued that it was useful to think
of the galaxy distribution as being made up of distinct clusters with a range
of sizes. Since galaxies are discrete objects, they described how to study sta-
tistical properties of a distribution of discrete points; the description required
knowledge of the distribution of cluster sizes, the distribution of points around
the cluster center, and a description of the clustering of the clusters [199]. At
that time, none of these ingredients were known, and so in subsequent work
[200,201], they focussed on inferring these parameters from data which was
just becoming useful for statistical studies.

Since that time, it has become clear that much of the mass in the Universe
is dark, and that this mass was initially rather smoothly distributed. There-
fore, the luminous galaxies we see today may be biased tracers of the dark
matter distribution. That is to say, the relation between the number of galax-
ies in a randomly placed cell and the amount of dark matter the same cell
contains, may be rather complicated. In addition, there is evidence that the
initial fluctuation field was very close to a Gaussian random field. Linear
and higher order perturbation theory descriptions of gravitational clustering
from Gaussian initial fluctuations have been developed (see Bernardeau et
al. [15] for a comprehensive review); these describe the evolution and mildly
non-linear clustering of the dark matter, but they break down when the clus-
tering is highly non-linear (typically, this happens on scales smaller than a few
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Theorist’s 
simplification :)

8

Cooray & Sheth (2002)
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Halo model ingredients

Abundance of dark matter halos 
and its clustering properties

The connection between galaxies 
and dark matter

Cosmological information

Galaxy formation physics
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Dark matter distribution

Halo mass function

4

FIG. 1.— Upper Panel: Large-scale bias as determined by the ratio (Ph/Plin)1/2 for∆ = 200. Results from the smaller boxes are represented by the gray circles.
For these simulations, only measurements with less than 10% error are shown to avoid crowding. The larger-volume simulations are represented by the colored
symbols. Each point type indicates a different simulation. The different colors, from left to right, go in order of increasing redshift from z = 0 to z = 2.5 (see Table
1 for the redshift outputs of each simulation). Like colors between simulations imply the same redshift. For these large-volume simulations, measurements with
less than 25% errors are shown. Lower Panel: Fractional differences of the N-body results with the the fitting function shown in the upper panel.

et al. 2005; Gao et al. 2005; Pillepich et al. 2008). Updated fit-
ting functions have sometimes used the functional form of ST
(Mandelbaum et al. 2005) or SMT (Tinker et al. 2005) with
new parameters chosen to match numerical data, while others
have proposed entirely new functional forms (e.g., Seljak &
Warren 2004; Pillepich et al. 2008). Our tests show that the
SMT function does not yield optimal χ2 values when compar-
ing to our numerical results. We therefore introduce a similar
but more flexible fitting function of the form

b(ν) = 1!A
νa

νa + δac
+Bνb +Cνc. (6)

Equation (6) scales as a power-law at the highest masses, flat-
tens out at low masses and asymptotes to b = 1 at ν = 0, pro-
vided a> 0.
A convenient property of the SC, ST, and SMT functions is

that they are normalized such that the mean bias of halos is
unity. Thus, if one adopts the halo model ansatz that all mass
is contained within halos, dark matter is not biased against it-
self. Numerically calibrated bias functions in the literature do
not obey this constraint (Jing 1998, 1999; Tinker et al. 2005;
Seljak &Warren 2004; Pillepich et al. 2008). When fitting for
the parameters of equation (6), we enforce this constraint by
requiring that our bias function obey the relation

∫

b(ν) f (ν)dν = 1, (7)

where f (ν) is the halo mass function, once again expressed in
terms of the scaling variable ν. At each ∆, we use the halo
mass functions listed in Appendix C of T08, which are nor-
malized such that the mean density of the universe is obtained

Halo bias function

1411 LOG M

Tinker et al. 2010

10

7

rectly from our simulations (Tinker et. al., in preparation).
The figure shows that the measured and re-scaled mass func-
tions are in good agreement for ∆ ≤ 800, where the scaled-
up mass function is ∼ 5% higher than the true mass func-
tion. This error is accrued from the halos located within R200,
which can become separate halos for higher overdensities and
are not accounted for in the rescaling process.
At higher overdensities, the agreement is markedly worse,

especially for the lower-resolution L1280 boxes. At ∆ =
1600, the measured mass function is underestimated by ∼

10%, increasing to ∼ 20% at ∆ = 3200. Therefore, for this
simulation we use the directly-measured mass function only
at∆ ≤ 600, while at higher∆ we calculate the mass function
by mass re-scaling using halos identified with an overdensity
∆ = 600. A scaling baseline of log(∆high/∆low)≤ 0.9 accrues
only! 2% error in the amplitude of the mass function at these
masses. Thus the rescaled halo catalogs are reliable for cali-
brating the halo mass function at high overdensity. This pro-
cedure is used to measure high-∆ mass functions for L768
(for∆ > 800) and L1280 (for∆ > 600).
At∆ = 200 we choose a conservative minimum value of no

less than 400 particles per halo. Below this value resolution
effects become apparent, and simulations with differing mass
resolutions begin to diverge. This is readily seen in the SO
mass functions analyzed in Jenkins et al. (2001). At higher
∆, halos are probed at significantly smaller radii, and the res-
olution requirements are more stringent. Thus at higher ∆

we increase the minimum number of particles such that, at
∆ = 3200, Nmin is higher by a factor of 4. Exact values for
each overdensity are listed in Table 2.

3. HALO MASS FUNCTION
3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the
power spectrum, successful analytical ansatzes predict the
halo abundance quite accurately by using a universal func-
tion describing the mass fraction of matter in peaks of a given
height, ν ≡ δc/σ(M,z), in the linear density field smoothed
at some scale R = (3M/4πρ̄m)1/3 (Press & Schechter 1974;
Bond et al. 1991; Sheth & Tormen 1999). Here, δc ≈ 1.69
is a constant corresponding to the critical linear overdensity
for collapse and σ(M,z) is the rms variance of the linear den-
sity field smoothed on scale R(M). The traditional nonlinear
mass scale M∗ corresponds to σ = δc. This fact has moti-
vated the search for accurate universal functions describing
simulation results by Jenkins et al. (2001), White (2002), and
Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn
dM

= f (σ) ρ̄m
M
d lnσ!1

dM
. (2)

Here, the function f (σ) is expected to be universal to the
changes in redshift and cosmology and is parameterized as

f (σ) = A
[(σ

b

)!a
+1

]

e!c/σ
2

(3)

where
σ =

∫

P(k)Ŵ (kR)k2dk, (4)

and P(k) is the linear matter power spectrum as a function of
wavenumber k, and Ŵ is the Fourier transform of the real-
space top-hat window function of radius R. It is convenient to

FIG. 5.— The measured mass functions for all WMAP1 simulations,
plotted as (M2/ρ̄m)dn/dM against logM. The solid curves are the best-fit
functions from Table 2. The three sets of points show results for ∆ = 200,
800, and 3200 (from top to bottom). To provide a rough scaling between
M and σ!1, the top axis of the plot shows σ!1 for this mass range for the
WMAP1 cosmology. The slight offset between the L1280 results and the
solid curves is due to the slightly lower value of Ωm = 0.27.

recall that the matter variance monotonically decreases with
increasing smoothing scale, thus higher M corresponds to
lower σ.
The functional form (3) was used in Warren et al. (2006),

with minor algebraic difference, and is similar to the forms
used by Sheth & Tormen (1999)11 and Jenkins et al. (2001).
Parameters A, a, b, and c are constants to be calibrated by
simulations. The parameter A sets the overall amplitude of
the mass function, while a and b set the slope and amplitude
of the low-mass power law, respectively. The parameter c
determines the cutoff scale at which the abundance of halos
exponentially decreases.
The best fit values of these parameters were determined

by fitting eq. (3) to all the z = 0 simulations using χ2 mini-
mization and are listed in Table 2 for each value of ∆. For
∆≥ 1600, we fix the value of A to be 0.26 without any loss of
accuracy12. This allows the other parameters to vary mono-
tonically with ∆, allowing for smooth interpolation between
values of∆.
Figure 5 shows the mass function measured for three values

of∆ and the corresponding best fit analytic functions. We plot
(M2/ρ̄m)dn/dM rather than dn/dM to reduce the dynamic
range of the y-axis, as dn/dM values span nearly 14 orders
of magnitude. The figure shows that as ∆ increases the halo
11 A convenient property of the Sheth & Tormen mass function is that

one recovers the mean matter density of the universe when integrating over
all σ!1. Equation (3) does not converge when integrating to σ!1 = 0. In
Appendix C we present a modified fitting function that is properly normalized
at all∆ but still produces accurate results at z = 0.
12 Although a four-parameter function is required to accurately fit the data

at low ∆, at high overdensities the error bars are sufficiently large that a
degeneracy between A and a emerges, and the data can be fit with only three
free parameters, given a reasonable choice for A.

Tinker et al. 2009
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Inside a dark matter halo

Dark matter
Density profile, NFW
Mass dependent concentration
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Inside a dark matter halo

Dark matter
Density profile, NFW
Mass dependent concentration

Central galaxy
Sits at the center of the halo
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Inside a dark matter halo

Dark matter
Density profile, NFW
Mass dependent concentration

Satellite galaxies
Roughly follow the dark matter

Central galaxy
Sits at the center of the halo
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Conditional luminosity function
Average number of galaxies of 
luminosity L living in halos of mass M

Central CLF
Satellite CLF

Abundance of galaxies
Average number of galaxies in a 
luminosity bin

Φ(L|M) = Φc(L|M) + Φs(L|M)

〈Nc〉[L1,L2](M) =

∫ L2

L1

Φc(L|M)dL

〈Ns〉[L1,L2](M) =

∫ L2

L1

Φs(L|M)dL

12

Φ(L) =

∫
Φ(L|M)n(M)dM

Wednesday, January 25, 2012



Surhud More, KICP RPM Seminar, LBNL

Galaxy clustering
Galaxy pairs 
from the same 
halo

central-satellite
satellite-satellite

Galaxy pairs 
from different 
halos

central-central
central-satellite
satellite-satellite
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One halo central-satellite 

ns(r)

14

!r

〈Nc〉M 〈Ns〉Mu(r|M)n(M)
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One halo satellite-satellite

!r

!r1
!r2

15

1

2
〈Ns〉Mu(!r1|M)〈Ns〉Mu(!r2|M)n(M)

Wednesday, January 25, 2012



Surhud More, KICP RPM Seminar, LBNL

Pair counting 1-halo terms

1 halo central-satellite
1 halo satellite-satellite

Total 1 halo pairs

〈Nc〉M 〈Ns〉Mu(r|M)
1

2
〈Ns〉Mu(!r1|M)〈Ns〉Mu(!r2|M)

|!r1 − !r2| = r

Convolution!!! 
Easiest to handle in Fourier space

|!r1 − !r2| = r

16

∫
[

〈Nc〉M 〈Ns〉Mu(r|M) +
1

2
〈Ns〉Mu(!r1|M)〈Ns〉Mu(!r2|M)

]

n(M)dM
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Two halo central-central

!r

17

An accurate treatment of the halo clustering: a mathematically 
consistent treatment of radial dependence and halo exclusion!

1

2
〈Nc〉M1

〈Nc〉M2

[

1 + ξhh(r,M1, M2)
]

n(M1)n(M2)
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Two halo central-satellite
Origin

!r1 − !rs

!r1

!r2

!r

〈Nc〉M2
〈Ns〉M1

u(!r1 − !rs|M1)
[

1 + ξhh(|!r1 − !r2|, M1, M2)
]
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Two halo satellite-satellite
Origin

!r1 − !rs

!r1

!r2

!r

!r2 − !rs

1

2
〈Ns〉M1

u(!r1 − !rs1
|M1)〈Ns〉M2

u(!r2 − !rs2
|M2)

[

1 + ξhh(|!r1 − !r2|, M1, M2)
]
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Putting it all together
Numerical simulations

Abundance of haloes
Clustering of haloes
Density profile of dark matter

Concentration-Mass relation

Conditional luminosity function
Halo occupation distribution of central 
and satellite galaxies as a function of 
halo mass

20

Cosmology sensitive

Galaxy formation physics
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Fixed cosmology

5. GALAXY CLUSTERING& GALAXY-GALAXY LENSING:
AN ASTROPHYSICAL PERSPECTIVE

Figure 5.1: Upper row, left and central panels. The luminosity function of galaxies and the luminos-
ity dependence of the galaxy correlation length are plotted. Data come from the analysis of Blanton
et al.(2003a) and Wang et al.2007. The blue contours indicate the 68 and 95 percent confidence level
obtained from the MCMC. The agreement is extremely accurate for the luminosity function whereas is
modest for the correlation length. Lower row, three panels. The additional information coming from the
group catalogue of YMB08 is plotted together with the corresponding 68 and 95 percent confidence level
derived with the MCMC. In particular, the halo mass dependence of the central galaxy luminosity, the
satellite conditional luminosity function normalization φ∗s and the the exponent αs are shown in the left,
central and middle panel, respectively. Upper row, right panel. The 68 and 95 percent confidence levels
of the satellite fraction, fs, obtained from the CLF (see eq. [5.10]).

70

WMAP3

Cacciato, vdB, SM
 et al. 2009

σ8 = 0.74

Ωm = 0.27
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70

WMAP3

Cacciato, vdB, SM
 et al. 2009

6. GALAXY CLUSTERING& GALAXY-GALAXY LENSING:
CONSTRAINING COSMOLOGICAL PARAMETERS

Figure 6.3: Upper row, left and central panels. The luminosity function of galaxies and the luminosity de-
pendence of the galaxy correlation length are plotted. Data come from the analysis of Blanton et al.(2003a)
and Wang et al.2007. The blue contours indicate the 68 and 95 percent confidence level obtained from
the MCMC based on WMAP1. The agreement is extremely accurate for the luminosity function whereas
is modest for the correlation length. Lower row, three panels. The additional information coming from
the group catalogue of YMB08 is plotted together with the corresponding 68 and 95 percent confidence
level derived with the MCMC based on WMAP1. In particular, the halo mass dependence of the central
galaxy luminosity, the satellite conditional luminosity function normalization φ∗s and the the exponent αs
are shown in the left, central and middle panel, respectively. Upper row, right panel. The 68 and 95
percent confidence levels of the satellite fraction, fs, obtained from the CLF (see eq. [5.10]).

94

WMAP1
Ωm = 0.3

σ8 = 0.9

σ8 = 0.74

Ωm = 0.27
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94

WMAP1
Ωm = 0.3

σ8 = 0.9

6.1 The Relevance of the Underlying Cosmology

Figure 6.6: The 68 and 95 percent confidence levels for the mass-to-light ratios, M/〈L19.5〉M , obtained
from the CLF MCMCs for the WMAP3 and WMAP1 cosmologies.

99

σ8 = 0.74

Ωm = 0.27
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Galaxy-galaxy lensing
Image adapted 
from Wikipedia
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Galaxy-galaxy lensing
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Galaxy-galaxy lensing

R

〈ε〉 = γt(R) γt(R) =
Σ̄(< R) − Σ(R)

Σcrit
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Galaxy-galaxy lensing
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Galaxy-galaxy lensing

Galaxies with similar luminosity
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Galaxy-galaxy lensing

Stacking

Galaxies with similar luminosity
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Galaxy-galaxy lensing

Stacking

Galaxies with similar luminosity

Signal can be predicted using CLF!
23
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Galaxy-galaxy lensing
6. GALAXY CLUSTERING& GALAXY-GALAXY LENSING:
CONSTRAINING COSMOLOGICAL PARAMETERS

Figure 6.7: The predictions for the lensing signal, ∆Σ(R), are shown for two different sets of cosmological
parameters (WMAP1 and WMAP3, see text). The green (blue) shaded area corresponds to the 95%
confidence level of the WMAP1 (WMAP3) model. Note that, although the cosmological parameters of
these two cosmologies only differ by < 20 percent (see Table 6.1), the ESD predictions are very different,
and can easily be discriminated.

100

24

Cacciato, vdB, SM
 et al. 2009
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Model parameters

Central CLF

Satellite CLF

Cosmology

Lc(M) : 4 parameters, σlog L : 1 parameter

Φ ∗ (M) : 3 parameters, α : 1 parameter

Ωm, σ8 free,WMAP7 priors onΩb, h, ns
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Fisher forecasts
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constrain cosmological parameters
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Surhud S. More

Figure 1: Fisher matrix predictions of cosmological constraints obtainable using the luminosity
function (LF), galaxy-galaxy lensing data (ESD) and the projected galaxy clustering (Wp). Dotted
lines show the 68, 95 and 99 percent confidence intervals on the cosmological parameter set
(Ωm,σ8) and the sum of neutrino masses, when only the LF and Wp data are used. The dashed
lines show confidence intervals when the LF and ESD data are used, while the solid lines show
the confidence contours when combining the three sets of data. The left hand panel assumes no
prior on the rest of the cosmological parameter set, while the middle and right panels assume prior
information from the seventh year data release of the cosmic microwave background experiment
WMAP on Ωb and ns, and the HST key project prior on the Hubble constant.
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Mock catalog tests

Galaxy-galaxy clustering signal
27

12 van den Bosch et al.

Figure 3. Top panels show the galaxy-galaxy two-point correlation functions for three different magnitude bins, as indicated in the top
panels [values in square brackets indicate 0.1Mr −5 log h]. Colored symbols reflect the results obtained from the mock galaxy distribution
in the L250 simulation box, while the solid line is the prediction of our analytical model. The middle panels show the contributions from
the 1-halo central-satellite term (purple symbols, labeled ‘1h[cs]’), the 1-halo satellite-satellite term (blue symbols, labeled ‘1h[ss]’), and
the 2-halo term (green symbols, labeled ‘2h’). Once again, the solid lines show the model predictions. As in Fig. 2, errorbars reflecting
Poisson statistics are indicated, but are almost always smaller than the symbols. The bottom panels, show the fractional difference
between model and mock for the total correlation functions shown in the top panels. The dark and light shaded areas indicate fractional
errors of less than 5 and 10 percent, respectively. As is evident, the accuracy of our model is typically better than 5 percent, and always
better than 10 percent.

4.2 Calibrating Scale Dependence of Halo Bias

As discussed in §3.4, fitting function (65) for the radial bias
is likely to be inaccurate on small scales due to the fact that
it was calibrated for a different halo definition than the one
used here. To investigate the magnitude of this effect, and
to test plausible corrections for it, we compare our model
predictions against the L250 simulation box.

We start by computing both the halo-halo auto-
correlation function, ξhh(r|M) and the halo-matter cross-
correlation function, ξhm(r|M), for a number of bins in
halo mass. We only consider haloes in the mass range

1012h−1 M" ≤ M ≤ 1014.5h−1 M". The lower limit is
needed to account for the fact that the simulation has a
finite mass resolution, while the upper limit is adopted to
be less sensitive to cosmic variance originating from the rel-
atively small volume of the simulation box. Over the mass
range 1012h−1 M" ≤ M ≤ 1014.5h−1 M" the halo mass
function is in excellent agreement with the fitting func-
tion of Tinker et al. (2008), which is also the one used in
our analytical calculations. Note that when cross-correlating
the haloes with the dark matter particles, we only con-
sider the particles associated with haloes in the mass range
1012h−1 M" ≤ M ≤ 1014.5h−1 M": A large fraction of all

c© 2012 RAS, MNRAS 000, 1–20

vdB, SM et al. in prep

Wednesday, January 25, 2012



Surhud More, KICP RPM Seminar, LBNL

Mock catalog tests

Galaxy matter clustering signal
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Cosmological Constraints from Clustering & Lensing 13

Figure 4. Same as Fig. ?? but now for the galaxy-matter cross correlations. In the middle row of panels, the 1-halo component is split in
the central-matter (purple symbols, labeled ‘1h[cm]’) and satellite-matter (blue symbols, labeled ‘1h[sm]’) parts. As for the galaxy-galaxy
correlation functions (see Fig. 3), the accuracy of our model is typically better than 5 percent, and always better than 10 percent.

dark matter particles in the simulation box are not associ-
ated with any dark matter halo, but that is simply a mani-
festation of the limited (mass and force) resolution of the N-
body simulation. In other words, the L250 simulation does
not properly resolve (non-linear) structure on a mass scale
M < 1012h−1M", and we therefore do not expect our model
to accurately reproduce the halo-matter cross correlation
function of the simulation if the cross correlation is with all

dark matter.

The resulting ξhh(r|M) and ξhm(r|M) are shown as
filled circles in the upper and lower panels of Fig. 2, respec-
tively. The blue, dashed lines are the results obtained from
our model for the galaxy-galaxy and galaxy-matter correla-
tion functions for the same cosmology and redshift as the
simulation box, obtained by setting 〈Nc|M〉 = 1 if the halo
mass M falls within the halo mass bin in consideration, and
〈Nc|M〉 = 0 otherwise, plus 〈Ns|M〉 = 0 for all M . Note

that all integrals over halo mass are only integrated over the
range 1012h−1M" ≤ M ≤ 1014.5h−1M". Also, when Fourier
transforming the power-spectrum to obtain the correlation
function, we adopt a lower limit for the wavenumbers in or-
der to account for the fact that the simulation box has a
finite size and periodic boundary conditions: specifically, in
Eq. (42) we replace the lower limit of the integration range
by kmin =

√
3×(2π/Lbox). In this model we have set ψ = 0.0,

which implies that we have simply adopted the radial bias
function of Tinker et al. (2005) without any modification
(i.e., ζ(r, z) = ζ0(r, z); see §3.4).

The model accurately fits the halo-matter cross corre-
lation functions on both small and large scales. The for-
mer indicates that our modeling of the halo density profiles,
u(r|M), is accurate (i.e., we are not making a significant
error because we do not account for the scatter in halo con-
centration; see §3.5), while the good fit on large scales ar-

c© 2012 RAS, MNRAS 000, 1–20
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Redshift space distortions

The redshift space correlation 
function was integrated along the 
line-of-sight to 40 Mpc.

29

Cosmological Constraints from Clustering & Lensing 15

Figure 6. The correction factor, fcorr(rp), that describes the effect of residual redshift space distortions that arise from the use of a
finite integration range when computing the projected correlation function, i.e., from Eq. (45) with a finite rmax. The shaded circles show
the results obtained from the mock galaxy distribution in the L1000W simulation box with rmax = 40h−1 Mpc. Results are shown for
the same three magnitude bins as in Figs. 3 - ??, as indicated. Dashed and solid curves correspond to the fcorr(rp) obtained using the
Kaiser formalism (see §2.3) with the linear and non-linear galaxy-galaxy correlation functions, respectively. The latter is in much better
agreement with the mock results on small scales. See text for a detailed discussion.

cles) and the 1-halo satellite-satellite term (blue filled cir-
cles). In the high-luminosity bin (right-hand panels), the
galaxy-galaxy correlation function is dominated by the 1-
halo central-satellite term on small scales (r <∼ 0.3h−1 Mpc),
and by the 2-halo term on large scales (r >∼ 1.0h−1Mpc). On
intermediate scales, the 1-halo satellite-satellite term dom-
inates. Note how this term becomes more and more dom-
inant for less luminous galaxies; in fact in the lowest lu-
minosity bin considered here (left-hand panels), the 1-halo
satellite-satellite term completely dominates the signal for
r <∼ 1h−1 Mpc. This reflects the fact that the satellite frac-
tion increases drastically from fsat " 0.136 for the brightest
bin, to fsat " 0.465 for the intermediate luminosity bin, to
fsat " 0.996 for the faintest bin. Note, though, that these
satellite fractions are unrealistic due to the adopted cut-
offs in halo mass at M = 1012h−1 M" and 1014.5h−1 M".
For example, for the CLF adopted here, virtually all central
galaxies with r-band magnitudes (K-corrected to z = 0.1)
in the range −18 ≥0.1 Mr − 5 log h ≥ −19.5 reside in haloes
with M < 1012h−1 M", which are not accounted for in our
MGD; hence, almost all mock galaxies in this magnitude
range are satellites. For comparison, if we were to integrate
our CLF over the entire mass range from M = 0 to M = ∞,
the corresponding satellite fractions, given by

fsat(L1, L2) =

∫ L2

L1
dL

∫ ∞

0
Φs(L|M) n(M) dM

∫ L2

L1
Φ(L)dL

, (85)

are equal to fsat = 0.334, 0.253, and 0.167 from the faintest
to the brightest bin, respectively. Although the trends seen
in Fig. 3 are stronger than what is expected in reality, we
consider the fact that the dynamic range in fsat covered is
unrealistically large beneficial for the purpose of testing the
accuracy of our model.

The solid lines in the panels in the upper and middle
rows of Fig. 3 are the analytical results obtained using our
fiducial model with halo exclusion and with ψ = 0.125.

Here we have adopted the same cosmology, redshift and
CLF parameters as for the MGD. Note that, once again,
all integrals over halo mass are only integrated over the
range 1012h−1 M" ≤ M ≤ 1014.5h−1 M", and we adopt
kmin =

√
3×(2π/Lbox) for the integration range in Eq. (42).

Overall the agreement between our analytical prediction and
the results from the MGD is extremely good. As is evident
from the panels in the middle row, our treatment of halo ex-
clusion nicely captures the sudden decline of the 2-halo term
on small scales. Although the analytical 2-halo term becomes
inaccurate for r <∼ 0.5h−1 Mpc, mainly due to numerical is-
sues, at these small scales the 1-halo term always dominates
the total correlation function by at least an order of mag-
nitude. Hence, this inaccuracy is of little practical concern.
This is evident from the lower panels were we plot the differ-
ence between the model prediction and the true correlation
function in the mock, normalized by the latter, as function of
radius. Over the entire range 0.01h−1 Mpc ≤ r <∼ 10h−1Mpc
the model predictions agree with the mock results to an ac-
curacy of a few percent (typically < 3%). At the 1-halo to
2-halo transition scale (r " 1h−1Mpc), which has been noto-
riously difficult to model accurately, the errors are somewhat
larger but always stay below 10%.

Fig. 4 shows the same as Fig. 3, but now for the galaxy-
matter cross correlation, ξgm(r). Similar trends are evident;
the model’s 2-halo term becomes inaccurate on small scales,
but this has little to no impact on the quality of the model
as is evident from the lower panels. As for the galaxy-galaxy
correlation function, the model agrees with the simulation
results at the few percent level. XXXX Discuss the good
agreement in the one halo term on small scales. This indi-
cates that non-sphericity of haloes (see §??), scatter in halo
concentration (see §3.5), and halo substructure (see §3.5)
do not have a large ( >∼ 10 percent) impact on the results
XXXXX

c© 2012 RAS, MNRAS 000, 1–20
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Sphericity assumption

Sphericity assumption is good enough to predict 
the two point correlation function to about 5%: 
however use Spherically Overdense halos!
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Some ideas for the future!!!
Modified gravity models: f(R) gravity

Generalize the Einstein-Hilbert action

Can mimic the effects of dark energy for 
specific choices of the function f(R)

However, it has to reduce to GR on small 
scales to obey solar system constraints.
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Take home message

Galaxy observations can be used to 
constrain cosmological parameters!

10 More et al.

Figure 7. Covariance matrix: Model A
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modeling with CLF!!!
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Word cloud

Thank you!!!
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